Image hosted by Photobucket.com

Thursday, May 11, 2006

Faster Than Light...

...and heading backwards.
To understand how light's speed can be manipulated, think of a funhouse mirror that makes you look fatter. As you first walk by the mirror, you look normal, but as you pass the curved portion in the center, your reflection stretches, with the far edge seeming to leap ahead of you (the reference walker) for a moment. In the same way, a pulse of light fired through special materials moves at normal speed until it hits the substance, where it is stretched out to reach and exit the material's other side [See "fast light" animation].

Conversely, if the funhouse mirror were the kind that made you look skinny, your reflection would appear to suddenly squish together, with the leading edge of your reflection slowing as you passed the curved section. Similarly, a light pulse can be made to contract and slow inside a material, exiting the other side much later than it naturally would [See "slow light" animation].

To visualize Boyd's reverse-traveling light pulse, replace the mirror with a big-screen TV and video camera. As you may have noticed when passing such a display in an electronics store window, as you walk past the camera, your on-screen image appears on the far side of the TV. It walks toward you, passes you in the middle, and continues moving in the opposite direction until it exits the other side of the screen.

A negative-speed pulse of light acts much the same way. As the pulse enters the material, a second pulse appears on the far end of the fiber and flows backward. The reversed pulse not only propagates backward, but it releases a forward pulse out the far end of the fiber. In this way, the pulse that enters the front of the fiber appears out the end almost instantly, apparently traveling faster than the regular speed of light.
Unfortunately it does not prove the insurmountable speed of light possible. The conclusion of Einstein's work that nothing may travel faster than the speed of light still stands.

H/T Slashdot

0 Comments:

Post a Comment

<< Home